Arduino For Total Newbies w/ TV-B-Gone as example project

Mitch Altman

Chief Scientist, Cornfield Electronics, San Francisco, CA

Inventor of TV-B-Gone universal remote controls

Co-founder of **3Ware** (successful Silicon Valley startup)

Pioneer of VR (in the mid-1980s)

Founding mentor at HAX (1st and biggest hardware accelerator)

Co-founder of Noisebridge (San Francisco hackerspace)

email: mitch@CornfieldElectronics.com

site: www.CornfieldElectronics.com

twitter: @maltman23

flickr: maltman23

WeChat: mitchaltman

Syllabus

- Intro
- Everything You Need to Know About Electronics
- How to solder / make your own Arduino
- How to Set Up and Use the Arduino Software
- How to Hack Arduino Programs ("Sketches")
- How to Use Solderless Breadboards
- How to Read a Schematic
- Make a TV-B-Gone Remote Control with your Arduino Clone without soldering

Bring all of this home with you!

U-Do-It-Duino kit

Stuff!

Parts Pack

USB-Serial cable

(Don't bring these home)

Tools

I have these Toolkits for sale

Tools

Everything You Need to Know About Electronics

SOLDERING IS EASY

HERE'S HOW TO DO IT

BY: MITCH ALTMAN (SOLDERING WISDOM)

ANDIE NORDGREN (COMICS ADAPTATION)

JEFF KEYZER (LAYOUT AND EDITING)

DOWNLOAD THIS COMIC BOOK AND SHARE IT WITH YOUR FRIENDS!

HTTP://MI@HTYOHM.COM/\$OLDERCOMIC

VOICI COMMENT FAIRE

DE: MITCH ALTMAN (MAITRE SOUDEUR)

> ANDIE NORDGREN (ADAPTATION BD)

JEFF KEYZER (EDITION, MISE EN PAGE)

SNOOTLAB (TRADUCTION FR.)

A DIFFUSER LARGEMENT !

Solder Your Aruino Clone

How to Set Up and Use the Arduino Software

How to Hack Arduino Programs ("Sketches")

How to Use Solderless Breadboards

Solderless Breadboard

How to Use Solderless Breadboards

Solderless Breadboad with LED and wires

4-Sep-2015

Arduino For Total Newbies

Mitch Altman (original TV-B-Gone hardware and firmware, modified TV-B-Gone Arduino design) Limore Fried (firmware modifications, kit design) Ken Shirriff (original modifications for Arduino)

Make a TV-B-Gone Remote Control with your Arduino Clone without soldering

Solderless Breadboard with parts & wires for TV-B-Gone

Questions?

MITCH ALTMAN

Chief Scientist / CEO

"Useful Electronics for a Better World"

www.CornfieldElectronics.com

572 Hill St. #Penthouse, San Francisco, CA 94114 phone: +1 415 / 377 - 5993

mitch@CornfieldElectronics.com

@maltman23

Arduino For Total Newbies Workshop at 30C3, Hamburg Germany

A complete computer on a chip

A complete computer on a chip: they control parts connected to their pins

Intro to Arduino: microcontrollers -- some of Mitch's projects --

Intro to Arduino: microcontrollers -- some of Mitch's projects --

ArduTouch music synthesizer kit

Intro to Arduino: microcontrollers -- some of Mitch's projects --

TV-B-Gone

Intro to Arduino: microcontrollers -- some of Mitch's projects --

TV-B-Gone

Just a remote control,
but only one button:
OFF!

Intro to Arduino: microcontrollers -- some of Mitch's projects --

TV-B-Gone

Intro to Arduino: microcontrollers

A complete computer on a chip: they control parts connected to their pins

Open Source

Open Source

Intro

Intro

Questions?

Electrons

Circuits = Electrons going in circles = Magic!

Power Supplies

Volts / Voltage

Electrons pushed with 1.5V. So, they move!

Amps / Current

Resistance / Ohms

Ohm's Law

Volts -- *force* pushing electrons

Amps -- speed of electrons

Ohms -- Resistance to flow of electrons

Ohm's Law

Volts -- *force* pushing electrons

Amps -- *speed* of electrons

Ohms -- Resistance to flow of electrons

Ohm's Law

Volts -- *force* pushing electrons

Amps -- *speed* of electrons

Ohms -- Resistance to flow of electrons

 $V_{olts} = A_{mps} \times R$

Also commonly written: $\mathbf{E} = \mathbf{I} \times \mathbf{R}$

Resistors / Ohms

The symbol for **Resistance**:

 Ω

Resistors / Ohms

Power Supply – it matters how you connect it!

What happens?

Polarity

Power Supply – it matters how you connect it!

Red wire:
Power,
Plus, Positive,
4.5V,
Vcc

Black wire:
Minus, Negative,
0V,
Ground (GND)

Power Supply – it matters how you connect it!

(electrons slowed down the same either way)

Resistors – it doesn't matter which way

Minus / Negative șide

Minus / Negative side

One-Way valve for electrons

Diodes – it matters which way!

Special kind of Diode – it Emits Light!

LED – it matters which way!

Lots of different colored LEDs! (including IR)

More current → More brightness! (until...)

More current → More brightness! (until...)

(with a resistor so no magic smoke goes away)

This is why we put a resistor in line with an LED

(the resistor can go on either side)

This is why we put a resistor in line with an LED

Let's make this light up!

It lights!

It's off
LED

LED & battery

Our first circuit

IR LED

IR LED

A "code" is IR light blinking on-off-on-off

IR Remote Control

A "code" is IR light blinking on-off-on-off

(we can't do this, but microcontrollers can!)

IR Remote Control

Takes about 60 seconds

About 150 IR "OFF" codes (one per blink)

TV-B-Gone universal remote control

Short wire is Minus / Negative

Little buckets for electrons

Capacitor / Farads

Strips of metal connected together – or not

Switch

A complete computer on a chip

Microcontroller

to control electronic parts connected to its pins.

Microcontroller

A complete computer on a chip

Microcontroller – it matters how you hook it up!

A complete computer – running a program!

Microcontroller – turned on!

all other pins are
Input pins
or
Output pins

Your program controls electronics parts on these other pins

Microcontroller

Analog Electronics:

Any voltage between Ground (0V) and Vcc

Digital Electronics:

Only 2 choices: Ground (0V) or Vcc

2 types of electronics

```
Ground (OV)

Low
High
Off
On

(without Voltage / with Voltage)
```

(without voitage / with voitage) (without current / with current)

Digital Electronics:
Only 2 choices: Ground (0V) or Vcc

Digital Electronics

To make a pin an Output pin

you tell it to become an Output pin with a statement in your program

Let's tell pin 13 to be an Output pin

Microcontroller – Output pins

Off On

(OV) (Power supply voltage)
-- like the Red wire of our power supply
-- but controlled by our program!

Only 2 choices: High or Low

Microcontroller – Output pins

A real world example

How to make an LED blink?

Hello World

Microcontroller

Software

Type:

Hello World

on your screen

Microcontrollers

make an LED blink

Hello World

Microcontroller

Turning an LED on and off

Turning an LED on and off

Since an Output pin
is like the Red wire of our power supply
when it is On

Let's connect this LED to an Output pin...
...instead of our power supply

(with a resistor so no magic smoke goes away)

And make it blink!

Turning an LED on and off

With a microcontroller: we can use an Output pin for power (if it's On)

Let's use Pin 13

And we use the Ground pin for Ground

Turning an LED on and off

Turning an LED on and off

Turning an LED on and off

Hello World

Turning an LED on and off

Turning an LED on and off

Turning an LED on and off

Hello World

This is our Hardware for Hello World!

Turning an LED on and off

Hello World

Turning an LED on and off

Hello World

Programs on microcontrollers are called "Firmware"

Turning an LED on and off

Hello World

We now have Hello World

We won't see it

Microcontrollers – they go really fast!

Hardware

Firmware

- pin 13 is Output pin
- set pin 13 High
- delay
- set pin 13 Low

Hello World-for real now!

Microcontroller – Firmware

A precision cut piece of quartz crystal

For precise timing

Crystal

A bunch of resistors and capacitors

For precise timing (but less than a crystal)

Ceramic Resonator

Hardware

Firmware

- pin 13 is Output pin
- set pin 13 High
- delay
- set pin 13 Low

Let's hack Hello World!

Add an IR LED to another pin

IR "OFF" codes

Add an IR LED to another pin (say, pin3)

IR "OFF" codes

Add an IR LED to another pin (say, pin3) and a resistor so no magic smoke goes away

IR "OFF" codes

IR "OFF" codes

Let's add an Input pin!

and
We can add a Start button

Low

High

High

To make the Input pin High, connect it to the Red wire of our power supply (Vcc).

OR:

just leave it blank

(built-in resistors on each pin)

High

If firmware looks at Pin 2 when it's like this, it reports back:

Low

If firmware looks at Pin 2 when it's like this, it reports back:

High

Reading the Input pin

Reading the Input pin with a Switch

Hardware

Firmware

Pin 13 Output – visible LED pin Pin 3 Output – IR LED pin Pin 2 Input – Push Button

Wait for Switch to be Low

Blink visible LED:

High, Delay, Low
Pulse IR LED for Sony "OFF" code:
High, Delay, Low, Delay...

Blink visible LED:

High, Delay, Low
Pulse IR LED for Panasonic "OFF" code:
High, Delay, Low, Delay...

Etc for all "OFF" codes

TV-B-Gone remote control

Hardware

Firmware

Pin 13 Output – visible LED pin Pin 3 Output – IR LED pin Pin 2 Input – Push Button

Wait for Switch to be Low

Blink visible LED:

High, Delay, Low
Pulse IR LED for Sony "OFF" code:
High, Delay, Low, Delay...

Blink visible LED:

High, Delay, Low
Pulse IR LED for Panasonic "OFF" code:
High, Delay, Low, Delay...

Etc for all "OFF" codes

TV-B-Gone remote control

Review:

More current → More brightness! (until...)

Review:

Output pin – only 2 choices:

Low

<u>High</u>

Off

On

(OV)

(Power supply voltage

-- controlled by our Firmware!)

Output pin – only 2 choices:

Low High

Off On

(0V) (Power supply voltage

-- controlled by our Firmware!)

Output pins

only allow
limited current

(built-in resistors on each pin)

Output pin – only 2 choices:

Low High

Off On

(0V) (Power supply voltage

-- controlled by our Firmware!)

IR LED III light up can only light up dimly the Output pin from the Output pin

Output pin – only limited current

Transistor

Hardware

Firmware

Pin 13 Output – visible LED pin Pin 3 Output – IR LED pin Pin 2 Input – Push Button

Wait for Switch to be Low

Blink visible LED:

High, Delay, Low
Pulse IR LED for Sony "OFF" code:
High, Delay, Low, Delay...

Blink visible LED:

High, Delay, Low
Pulse IR LED for Panasonic "OFF" code:
High, Delay, Low, Delay...

Etc for all "OFF" codes

TV-B-Gone remote control – we're done!

And, that is Everything You Need to Know About Electronics

Questions?

Learn To Solder

http://mightyohm.com/soldercomic download for free at:

Parts to use

Unused parts

Our first part to solder: C1

C1: Look down at the shape of this part

This is how a resistor look before inserting it into the board

C1: No need to bend leads first

How to hold a soldering iron

(Like a pencil – held from underneath)

The perfect kind of solder for electronics:

60/40 rosin core, solso good

0.031" (0.7mm) diameter (or smaller)

Important:

Use solder WITH lead (Pb) !! lead-free solder has very poisonous fumes!

3 Safety Tips...

Safety Tip #1:

Hot!!

(When you touch the tip, you will let go quickly -- every time!)

Safety Tip #2:

Lead (Pb) is toxic

But it easily washes off your hands with soap and water

Safety Tip #3:

(coming soon)

2 secrets to good soldering...

Secret #1:

Clean the tip!

(before every solder connection)

Bang (lightly) 3 times, whock solder of the tip Keep the tip shiny silver!

Make sure solder melts on the underside of the soldering iron (not the side or top of the soldering iron tip)!

Secret #2:

Keep hot tip down
1 second
for solder to flow!!

If you can see any of the pad, or the hole, you need more solder – so, just do all the steps again to make it perfect.

Cutting with the tip of the wire cutter gives you more control

Safety Tip #3:

Hold or cover the lead!

(Keep the leads from turning into missiles that go into your eyes!)

No wire sticking out

C1: All done! No wire sticking out

One part at a time

Till all the parts are soldered

Bend pins down on two opposite corners

- Solder all 28 pins.
- Only need to clean the tip after it gets dirty.
- No need to cut the pins short after soldering.

Solder on top of board if it falls out upside down

6-12

We're done!

Now we can connect parts to our Arduino, and program it!

How to Set Up and Use the Arduino Software

How to Hack Arduino Programs ("Sketches")

How to Hack Arduino Programs ("Sketches")

Solderless Breadboard

Solderless Breadboad with LED

Solderless Breadboad with LED and wires

Solderless Breadboad with LED and Resistor and wires

4-Sep-2015

Arduino For Total Newbies

Mitch Altman (original TV-B-Gone hardware and firmware, modified TV-B-Gone Arduino design) Limore Fried (firmware modifications, kit design) Ken Shirriff (original modifications for Arduino)

Parts Pack Contents

If you want to:

Please Remember:

to Wash your hands

I have these Toolkits for sale

Tools

